RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta) B.A./B.Sc. THIRD SEMESTER EXAMINATION, MARCH 2022 SECOND YEAR [BATCH 2020-23] Date : 02/03/2022		
Answe	er any five questions of the following:	[5×10
1. a)	Explain proof of correctness for finding the max	kimum element of an array.
b)	Explain potential method of amortized analysis	of an algorithm with example. [5+5
2. a)	Explain the basic structure of genetic algorithm.	
b)	Solve the following recurrence relation.	
	$T(1) = \theta(1)$ and $T(1) = \sum_{i=1}^{i=n-1} T(i) + 1$	[5+5
3. a)	Write down various mutation operators of genet	tic algorithm.
b)	Explain reduction. Why it is useful in computati	ional complexity?
c)	Explain backtracking with respect to 4-Queen's	problem. [3+(2+2)+3
4. a)	Differentiate between backtracking and branch a	and bound algorithms.
b) i	Find out the time complexity of the following cont f(int n)	ode segment.
{	$\inf_{n \le 2} (n \le 2)$	
	return 1;	
	} else	
	{	
	return $(f(\sqrt{n}) + 1);$	
} c)	Explain why the concept of prefix code is neces	sary in Huffman coding. [3+4+3
5. a)	Find an optimal parenthesization of a matrix cha $<4,5,3,2,7,2>$.	ain product whose sequence of dimensions is
b)	What value does PARTITION procedure of QU A[p r] have the same value? Explain.	TICKSORT return when all elements in the array [6+4
б. а)	What is the optimal Huffman code for the follow Fibonacci numbers?	wing set of frequencies, based on first eight
b)	a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21 How would you modify Strassen's algorithm to power of 2?	multiply nxn matrices in which n is not an exact [5+5

- 7. a) Consider an undirected graph with vertices labeled from 0 to 7 with the following edges. 0-1, 0-6, 0-7, 1-4, 1-6, 1-7, 2-3, 2-4, 2-5, 3-4, 3-6, 3-7, 5-6 Run BFS on the graph starting at node 0 and exploring edges incident to a vertex in numerical order of the labels of the vertex at the other end. Draw the BFS tree of the discovered edges produced by this algorithm.
 - b) Solve the following 0-1 knapsack problem using dynamic programming. Number of items = 4, Maximum capacity of the knapsack = 5 units, Weight of each item = 2,3,4,5 units respectively, Profit of each item = 3,4,5,6 units respectively.

_____ × _____